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Abstract. High-resolution bottom-up estimation provides a detailed guide for city greenhouse gas mitigation
options, offering details that can increase the economic efficiency of emissions reduction options and synergize
with other urban policy priorities at the human scale. As a critical constraint to urban atmospheric CO2 inversion
studies, bottom-up spatiotemporally explicit emissions data products are also necessary to construct comprehen-
sive urban CO2 emission information systems useful for trend detection and emissions verification. The “Hestia
Project” is an effort to provide bottom-up granular fossil fuel (FFCO2) emissions for the urban domain with
building/street and hourly space–time resolution. Here, we report on the latest urban area for which a Hestia
estimate has been completed – the Los Angeles megacity, encompassing five counties: Los Angeles County,
Orange County, Riverside County, San Bernardino County and Ventura County. We provide a complete descrip-
tion of the methods used to build the Hestia FFCO2 emissions data product for the years 2010–2015. We find
that the LA Basin emits 48.06 (±5.3) MtC yr−1, dominated by the on-road sector. Because of the uneven spatial
distribution of emissions, 10 % of the largest-emitting grid cells account for 93.6 %, 73.4 %, 66.2 %, and 45.3 %
of the industrial, commercial, on-road, and residential sector emissions, respectively. Hestia FFCO2 emissions
are 10.7 % larger than the inventory estimate generated by the local metropolitan planning agency, a difference
that is driven by the industrial and electricity production sectors. The detail of the Hestia-LA FFCO2 emissions
data product offers the potential for highly targeted, efficient urban greenhouse gas emissions mitigation policy.
The Hestia-LA v2.5 emissions data product can be downloaded from the National Institute of Standards and
Technology repository (https://doi.org/10.18434/T4/1502503, Gurney et al., 2019).
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1 Introduction

Driven by the growth of fossil fuel energy demand, the
amount of carbon dioxide (CO2), the most important anthro-
pogenic greenhouse gas (GHG) in the Earth’s atmosphere,
recently reached an annual average global mean concentra-
tion of 402.8± 0.1 parts per million (ppm), which is on its
way to doubling preindustrial levels (IPCC, 2013; Le Quéré
et al., 2018). We have also witnessed the first time that the
majority of the world’s inhabitants reside in urban areas. This
trend, like atmospheric CO2 levels, is intensifying. Projec-
tions show city populations worldwide could increase by 2 to
3 billion this century and triple in area by 2030 (UN DESA
1015; Seto et al., 2012).

These two thresholds are linked – almost three-quarters
of energy-related, atmospheric CO2 emissions are driven by
urban activity (Seto et al., 2014). If the world’s top 50 emit-
ting cities were counted as one country that nation would
rank third in emissions behind China and the United States
(World Bank, 2010). Indeed, urbanization is a factor shaping
national contributions to internationally agreed emission re-
ductions, as subnational governments are playing an increas-
ing role in climate mitigation and adaptation policy imple-
mentation (Bulkeley, 2010; Hsu et al., 2017). Furthermore,
the pace of urbanization continues to increase and opportuni-
ties to avoid carbon “lock-in” – where relationships between
technology, infrastructure, and urban form dictate decades of
high CO2 development – are diminishing (Güneralp et al.,
2017; Seto et al., 2016; Erickson and Lazarus, 2015).

Motivated by these numerical realities and the recognition
that low-emission development is consistent with a variety
of other co-benefits (e.g., air quality improvement), cities are
taking steps to mitigate their CO2 emissions (Rosenzweig et
al., 2010; Hsu et al., 2015; Watts, 2017). For example, 9120
cities representing over 770 million people (10.5 % of global
population) have committed to the Global Covenant of May-
ors (GCoM) to promote and support action to combat climate
change https://www.globalcovenantofmayors.org/about/, last
access: 12 August 2019). Over 90 large cities, as part of the
C40 network, have similarly committed to mitigation actions
with demonstrable progress. However, the scale of actual re-
ductions remains modest, despite the many pledges and ini-
tial progress. For example, a recent study reviewed 228 cities
that pledged to reduce 454 megatons of CO2 per year by 2020
(Erickson and Lazarus, 2012). Were they to meet these com-
mitments, the reduction would account for about 3 % of cur-
rent global urban emissions and less than 1 % of total global
emissions projected for 2020. More importantly, there is a
need for timely information to manage and assess the perfor-
mance of implemented mitigation efforts and policies (Bel-
lassen et al., 2015).

One of the barriers to targeting a deeper list of emission
reduction activities is the limited amount of actionable emis-
sions information at scales where human activity occurs:
individual buildings, vehicles, parks, factories, and power

plants (Gurney et al., 2015). These are the scales at which in-
terventions in CO2-emitting activity must occur. Hence, the
emissions magnitude and driving forces of those emissions
must be understood and quantified at the “human” scale to
make efficient (i.e., prioritizing the largest available emitting
activities and locales) mitigation choices and to capture the
urban co-benefits that also occur at this scale (e.g., improve
traffic congestion, “walkability”, green space). Similarly, a
key obstacle to assessing progress is a lack of independent
atmospheric evaluation (ideally consistent in space and time
with the human-scale emissions mapping) (Duren and Miller,
2011).

Existing methods and tools to account for urban emis-
sions have been developed primarily in the nonprofit com-
munity (WRI/WBCSD, 2004; Fong et al., 2014). In spite of
these important efforts, most cities lack independent, com-
prehensive, and comparable sources of data and information
to drive and/or adjust these frameworks. Furthermore, the ex-
isting tools and methods are designed at an aggregate level
(i.e., whole city, whole province), missing the most impor-
tant scale – sub-city – and hence provide limited actionable
information. The need for greater granularity and specificity
of emissions promises more efficient policy solutions. As all
cities reach beyond the existing “low-hanging fruit” of emis-
sions mitigation (i.e., those actions that are already planned
for other reasons, those that are simple, and financially prof-
itable), competition for limited resources and policy justifi-
cation will increase. Having information that can isolate the
most efficient and effective emission reduction investments
(specific roadways and intersections, building subdivisions,
or commercial building clusters) will be at a premium.

The scientific community has begun to build information
systems aimed at providing independent assessment of ur-
ban CO2 emissions. Through a combination of atmospheric
measurements, atmospheric transport modeling, and data-
driven “bottom-up” estimation, the scientific community is
exploring different methodologies, applications, and uncer-
tainty estimation of these approaches (Hutyra et al., 2014).
Atmospheric monitoring includes ground-based CO2 con-
centration measurements (McKain et al., 2012; Djuricin et
al., 2010; Miles et al., 2017; Turnbull et al., 2015; Verhulst et
al., 2017), ground-based eddy flux (i.e., emissions of CO2
into the atmosphere and/or CO2 being removed from the
atmospheric by vegetation) measurements (Christen, 2014;
Grimmond et al., 2002; Menzer et al., 2015; Velasco and
Roth, 2010; Velasco et al., 2005), aircraft-based flux mea-
surements (Mays et al., 2009; Cambaliza et al., 2014, 2015),
and whole column abundances from both ground- and space-
based remote-sensing platforms (Wunch et al., 2009; Kort et
al., 2012; Wong et al., 2015; Schwandner et al., 2017).

“Bottom-up” approaches, by contrast, include a mixture
of direct flux measurement, indirect measurement and mod-
eling. Common among the bottom-up approaches are those
that include flux estimation based on a combination of ac-
tivity data (population, number of vehicles, building floor
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area) and emission factors (amount of CO2 emitted per activ-
ity), socioeconomic regression modeling, or scaling from ag-
gregate fuel consumption (VandeWeghe and Kennedy, 2007;
Shu and Lam, 2011; Zhou and Gurney, 2011; Gurney et al.,
2012; Jones and Kammen, 2014; Ramaswami and Chavez,
2013; Patarasuk et al., 2016; Porse et al., 2016). Direct end-
of-pipe flux monitoring is often used for large point sources
such as power plants (Gurney et al., 2016). Indirect fluxes
(those occurring outside of the domain of interest but driven
by activity within) can be estimated through either direct
atmospheric measurement (and apportioned to the domain
of interest) can be modeled through process-based (Clark
and Chester, 2017) or economic input–output models (Ra-
maswami et al., 2008).

Integration of bottom-up urban flux estimation with atmo-
spheric monitoring has been achieved with atmospheric in-
verse modeling, an approach whereby surface fluxes are es-
timated from a best fit between bottom-up estimation and
fluxes inferred, via atmospheric transport modeling, from at-
mospheric concentrations (Lauvaux et al., 2013, 2016; Bréon
et al., 2015; Davis et al., 2017). Though the various mea-
surement and modeling components continue to be tested,
integration offers an urban anthropogenic CO2 information
system, which can provide accuracy, emissions process in-
formation, and spatiotemporal detail. This combination of
attributes satisfies a number of urgent requirements. For ex-
ample, it can offer the means to evaluate urban emissions
mitigation efforts by assessing urban trends. Space, time,
and process details of emitting activity can guide mitiga-
tion efforts, illuminating where efficient opportunities exist
to maximize reductions or focus new efforts. Finally, emis-
sions quantification is also seen as a potentially powerful
metric with which to better understand the urbanization pro-
cess itself, given the importance of energy consumption to
the evolution of cities.

The Hestia Project was begun to estimate bottom-up ur-
ban fossil fuel CO2 (FFCO2) fluxes for use within integrated
flux information systems. Begun in the city of Indianapolis,
the Hestia effort is now part of a larger experiment that in-
cludes many of the modeling and measurement aspects de-
scribed above. Referred to as the Indianapolis Flux Exper-
iment (INFLUX), this integrated effort has emerged to test
and explore quantification and uncertainties of the urban CO2
and methane (CH4) measurement and modeling approaches
using Indianapolis as the test bed experimental environment
(Whetstone, 2018; Davis et al., 2017).

Because urban areas differ in key attributes such as size,
geography, and emission sector composition, multiple cities
are now being used to test aspects of anthropogenic CO2
monitoring and modeling. For example, ongoing efforts in
integration of atmospheric measurements and bottom-up
emissions information are taking place in Paris (Bréeon et
al., 2015; Staufer et al., 2016), Boston (Sargent et al., 2018),
Salt Lake City (Mitchell et al., 2018) and London (Font et
al., 2015), to name a few. The Hestia approach has been

used in a number of these urban domains. Here, we pro-
vide the methods and results from one of those urban do-
mains, the Los Angeles Basin megacity. The Hestia-LA ef-
fort was developed under the Megacities Carbon framework
(https://megacities.jpl.nasa.gov/portal/, last access: 12 Au-
gust 2019). It was designed to serve the Megacities Car-
bon Project in a similar capacity to its role in INFLUX.
The Hestia-LA results are unique in that they give us the
first high-resolution spatiotemporally explicit inventory of
FFCO2 emissions centered over a megacity. A preliminary
version of Hestia-LA containing only the transportation sec-
tor emissions was reported by Rao et al. (2017). While em-
phasis thus far has been focused on atmospheric CH4 mon-
itoring analyses in the LA megacity (Carranza et al., 2018;
Wong et al., 2016; Verhulst et al., 2017; Hopkins et al., 2016),
work is ongoing to use the extensive atmospheric CO2 ob-
serving capacity in the Los Angeles domain (e.g., Newman
et al., 2016; Feng et al., 2016; Wong et al., 2015; Wunch
et al., 2009) within an atmospheric CO2 inversion (i.e., an
approach whereby CO2 concentration measurements in the
atmosphere are combined with models of wind motions to
infer what the emissions emanating from the surface must
be).

In this paper, we describe the study domain, the input data,
uncertainty, and the methods used to generate the Hestia-LA
(v2.5) data product and provide descriptive statistics at vari-
ous scales of aggregation. We compare the Hestia results to
the metro region planning authority estimate and place the
results in the context of urban greenhouse gas mitigation.
We discuss known gaps and weaknesses in the approach and
goals for future work.

2 Methods

2.1 Study domain

The Los Angeles metropolitan area is the second-largest
metropolitan area in the United States and one of the largest
metropolitan areas in the world. Under the definition of the
Metropolitan Statistical Area (MSA) by the U.S. Office of
Management and Budget, Metropolitan Los Angeles con-
sists of Los Angeles and Orange counties with a land area
of 12 562 km2 and a population of 9 819 000. The Greater
Los Angeles Area, as a Combined Statistical Area (CSA) de-
fined by the U.S. Census Bureau, encompasses the three ad-
ditional counties of Ventura, Riverside, and San Bernardino,
with a total land area of 87 945 km2 and an estimated popu-
lation of 18 550 288 in 2014. The Hestia-LA FFCO2 emis-
sions data product covers the complete geographic extent
of these five counties, including the eastern, relatively non-
urbanized portions of San Bernardino and Riverside coun-
ties. Airport emissions associated with aircraft up to 914 m
are included, as are marine shipping emissions out to 22.2 km
from the coastal boundary. Emissions considered here are
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Figure 1. The Hestia-LA urban domain. © Google Maps.

carbon dioxide only; other important greenhouse gases such
as methane (CH4) and nitrous oxide (N2O) are not included.

2.2 Input data

Input data to the Hestia-LA data product are supplied by out-
put of the Vulcan Project (Fig. 2), a quantification of FFCO2
emissions at fine spatial scales and timescales for the entire
US landscape (Gurney et al., 2009). The Hestia-LA process
extracts these results for the five counties within the Hestia-
LA domain and adjusts these estimates where superior lo-
cal data are available and further downscales and distributes
the Vulcan v3.0 results to buildings and street segments. De-
tails of the Vulcan v3.0 methodology are provided elsewhere
(Gurney et al., 2018). Here, we summarize the Vulcan v3.0
methods and then provide greater detail regarding the Hestia-
LA processing of that data to high-resolution spatial scales
and timescales.

The Vulcan v3.0 input data (the output of which is the
input for the Hestia-LA) are organized following nine eco-
nomic sector divisions (see Table 1) – residential, com-
mercial, industrial, electricity production, on-road, non-road,
railroad, commercial marine vessel, and airport. Also in-
cluded are emissions associated with the calcining process
in the production of cement. The data sources within each
sector are either acquired as FFCO2 emissions (the on-road
sector and most of the non-road and electricity production
sectors) or as carbon monoxide (CO) emissions (all other
sectors) and transformed to FFCO2 emissions via emission
factors. Furthermore, the data sources are represented geo-
graphically as either geocoded emitting locations (“point”)
or as spatial aggregates (“nonpoint” or area-based emis-
sions). Point sources are stationary emitting entities identi-

fied with geocoded locations such as industrial facilities in
which emissions exit through a stack or identifiable exhaust
feature (USEPA, 2015a). Area or nonpoint source emissions
are not inventoried at the facility level but represent diffuse
emissions within an individual US county. Because the fo-
cus of the current study is CO2 emissions resulting from the
combustion of a fossil fuels, fugitive or evaporative emis-
sions are not included and neither are “process” emissions,
for example, associated with high-temperature metallurgical
processes. Similarly, emissions associated with waste decay
(organic or inorganic) are not included.

Much of the input data for Vulcan v3.0 are acquired
from the Environmental Protection Agency’s (EPA) National
Emission Inventory (NEI) for the year 2011 (referred to here-
after as the “2011 NEI”), which is a comprehensive inven-
tory of all criteria air pollutants (CAPs) and hazardous air
pollutants (HAPs) across the United States (USEPA, 2015b).
All of the individual record-level reporting in the 2011 NEI
comes with a source classification code (SCC) that codifies
the general emission technology, fuel type used, and sector
(USEPA, 1995).

FFCO2 emissions from the electricity production sector
are primarily retrieved from two sources other than the 2011
NEI. The first is the EPA’s Clean Air Markets Division
(CAMD) data (USEPA, 2015c), which reports FFCO2 emis-
sions at geocoded electricity production facility locations.
The second is the Department of Energy’s Energy Informa-
tion Administration (DOE EIA) reporting data (DOE/EIA,
2003), which reports fuel consumption at geocoded electric-
ity production facility locations. Some electricity production
emissions are retrieved from the 2011 NEI (as CO emis-
sions). Overlap between these three data sources is elimi-
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Figure 2. Total annual FFCO2 emissions for the year 2011 from the Vulcan v3.0 output.

nated via preference in the order listed above. A detailed
comparison made between the CAMD and EIA FFCO2 emis-
sions, along with greater detail regarding data sources, pro-
cessing, and procedures can be found in Quick (2014) and
Gurney et al. (2014, 2016, 2018).

The 2011 on-road FFCO2 emissions are retrieved from the
EMissions FACtors 2014 model (EMFAC2014), produced by
the California Air Resources Board (CARB, 2014). On-road
transportation represents all mobile transport using paved
roadways and includes both private and commercial vehicles
of many individual classes (e.g., passenger vehicles, buses,
light duty trucks, etc). The non-road sector, by contrast, in-
cludes all surface mobile vehicles that do not travel on desig-
nated paved road surfaces and a large class of vehicles such
as construction equipment (e.g., bulldozers, backhoes, etc.),
ATVs, snowmobiles, and airport fueling vehicles. The non-
road emissions are derived from the 2011 NEI reporting of
non-road CO emissions. Airport emissions include all the
emissions emanating from aircraft during their taxi, takeoff,
and landing cycles up to 914 m and are derived from the 2011
NEI point reporting. Other activities occurring at airports
resulting in FFCO2 emissions are captured in the commer-
cial building sector (building heating) or the non-road sector
(baggage vehicles), sourced to the 2011 NEI nonpoint, 2011
NEI point, and 2011 NEI non-road reporting. Railroad emis-
sions include passenger and freight rail travel and are sourced

to the 2011 NEI nonpoint and point reporting. Commercial
marine vessels (CMV) include all commercial-based aquatic
vessels on either ocean or freshwater, sourced to the 2011
NEI nonpoint reporting. Personal aquatic vehicles such as
pleasure craft and sailboats are included in the non-road sec-
tor. Emissions associated with cement calcining are included
given its potential size and the tradition of including it with
CO2 inventories and use information from multiple sources
(PCA, 2006; USGS, 2003; IPCC, 2006).

The FFCO2 emissions input to the Hestia system from the
Vulcan v3.0 output is associated with spatial elements rep-
resented by points, lines, and polygons, depending upon the
data source, the sector, and the available spatial proxy data
(Table 1). Further spatialization and temporalization occurs
in the Hestia system.

To estimate FFCO2 emissions as a multiyear time series
from 2010 to 2015, the results for the year 2011 were scaled
using sector, state, and fuel consumption data (thermal units)
from the DOE EIA (DOE/EIA, 2018). The electricity pro-
duction sector was an exception to this approach where year-
specific data were available in the CAMD and EIA data
sources. Ratios were constructed relative to the year 2011
in all SEDS sector designations for each US state. The ratio
values are applied to the annual totals in each of the sector
and fuel categories specific to the state FIPS code.
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Table 1. Data sources used in the spatiotemporal distribution of FFCO2 emissions (the text provides acronym explanations and sources).

Sector/type Emissions data source Original spatial resolu-
tion/information

Spatial distribution Temporal distribution

On-road EMFACa, EPA NEIb

on-road
County, road class, ve-
hicle class

SCAG AADTc PeMSd, CCSe

Electricity production CAMDf CO2, EIAg

fuel, EPA NEI point
CO

Latitude and longitude,
fuel type, technology

EPA NEI latitude and longitude,
Google Earth

CAMD, EIA, and EPA

Residential nonpoint
buildings

EPA NEI nonpoint CO County, fuel type SCAG parcel, floor area, DOE
RECS NE-EUIh, LA County
building footprint

eQUESTi

Non-road NEI nonpoint CO County, vehicle class EPA spatial surrogates (specific
to vehicle class )

EPA temporal surrogates (by
SCCj)

Airport EPA NEI point
CO

Latitude and longitude,
aircraft class

Latitude and longitude LAWAk

Commercial nonpoint
buildings

EPA NEI nonpoint CO County, fuel SCAG parcel, floor area, DOE
CBECS NE-EUIl

eQUEST

Commercial point
sources

EPA NEI point CO Latitude and longitude,
fuel type, combustion
technology

EPA NEI latitude and longitude,
Google Earth

eQUEST

Industrial point
sources

EPA NEI point CO Latitude and longitude,
fuel type, combustion
technology

EPA NEI latitude and longitude,
Google Earth

EPA temporal surrogates (by
SCC)

Industrial nonpoint
buildings

EPA NEI nonpoint CO County, fuel type SCAG parcel, floor area, DOE
MECS NE-EUIm

eQUEST

Commercial marine
vessels

EPA NEI nonpoint CO County, fuel type, port
and underway

MEMn MEM

Railroad EPA NEI nonpoint CO,
EPA NEI point CO

County, fuel type, seg-
ment

EPA NEI rail shapefile and den-
sity distribution

EPA temporal surrogates (by
SCC)

a Emissions Factors Model. b Environmental Protection Agency, National Emissions Inventory. c Southern California Association of Governments, annual average daily traffic.
d Performance measurement system. e Continuous count stations. f Clean Air Markets Division. g Energy Information Administration. h Department of Energy Residential
Energy Consumption Survey, nonelectric energy use intensity. i Quick Energy Simulation Tool. j Source classification code. k Los Angeles World Airport.
l Department of Energy Commercial Energy Consumption Survey, nonelectric energy use intensity. m Department of Energy Manufacturing Energy Consumption Survey,
nonelectric energy use intensity. n Marine Emissions Model.

2.3 Space and time processing

2.3.1 Residential, commercial, and industrial nonpoint
buildings

The general approach to spatializing residential, commercial,
and industrial nonpoint FFCO2 emissions is to allocate the
county-scale, fuel-specific annual sector totals to individual
buildings (or parcels) using data on building type, building
age, total floor area, energy use intensity, and location.

A portion of the Hestia-LA building information was pro-
vided by the Southern California Association of Govern-
ments (SCAG) (Kimberly S. Clark and Christine Fernan-
dez, Southern California Association of Governments, per-
sonal communication, 2012) and included building type, age,
floor area, and location. The spatial resolution of this infor-
mation was at the land parcel scale (larger than the build-
ing footprint). Building footprint data were available in the
county of Los Angeles only, which offered additional build-

ing floor area information needed to correct some floor area
values in the SCAG parcel data (LAC, 2016). For example,
a large number of commercial parcels with zero floor area
were found in the Riverside County data, which were visu-
ally inspected in Google Earth to include qualifying build-
ings. These floor area values were corrected through the
combination of the census block-group General Building
Stock (GBS) database from the Federal Emergency Manage-
ment Agency (FEMA) (FEMA, 2017) and the National Land
Cover Database 2011 (NLCD), which classifies the US land
surface in 30 m pixels (Homer et al., 2015).

Building energy use intensity was derived from data gath-
ered by the DOE EIA and the California Energy Com-
mission (CEC). The DOE EIA Commercial Buildings En-
ergy Consumption Survey (CBECS), Manufacturing Energy
Consumption Survey (MECS), and Residential Energy Con-
sumption Survey (RECS) represent regional surveys of build-
ing energy consumption categorized by building type, fuel
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type, and age cohort (RECS, 2013; CBECS, 2016; MECS,
2010). Data for the Pacific West Census Division was used
and in the case of the commercial sector, was appended by
the CECs Commercial End-Use Survey (CEUS) data (CEC,
2006).

In the residential sector the nonelectric energy use inten-
sity (NE-EUI) was calculated from the reported energy con-
sumed and total floor area sampled specific to five building
types (Table 2) in the 2009 RECS survey. This was addition-
ally categorized by fuel type (natural gas and fuel oil) and
two age cohorts (pre-1980 and post-1979).

In the commercial sector, the NE-EUI was similarly calcu-
lated from the 2012 CBECS energy consumption micro-data
and total floor area sampled specific to 20 building types,
two fuel types (natural gas and fuel oil), and two age cohorts
(pre-1980 and post-1979). However, the sampling for the two
age cohorts was insufficient to generate estimates and the age
distinction was eliminated. Furthermore, where the sample
sizes remained small, NE-EUI data from the CEUS was used
in place of CBECS estimates (7 of 20 building types qual-
ified). As the CEUS follows a building typology different
from CBECS, a relationship of building types between the
two datasets was necessary (Table 3).

Unlike the commercial and residential survey data, the
2010 MECS survey data do not quantify energy consumption
for individually sampled buildings but rather report the sum
of the sampled buildings within each census region catego-
rized by manufacturing sector. The resulting NE-EUI values
are shown in Table 4. Like the commercial data, there was
inadequate sampling to justify two age cohorts.

The NE-EUI values derived from the
CBECS/RECS/MECS and CEUS survey data reflect
the total building fuel consumption for a specific fuel in a
census region divided by the total floor area of all buildings
in that census region consuming that fuel. This generates
a mean building NE-EUI value. Actual buildings will vary
around that mean value for a variety of reasons including
different occupancy schedules, different energy efficiencies
(in the envelope or heating and cooling system), different
microclimate, and other physical and behavioral character-
istics. Furthermore, the NE-EUI value applied in this way
will not capture the reality that some buildings do not use
fossil fuel (electricity-only buildings) or that some buildings
use one fossil fuel only versus another or use a mix of fuels
in a proportion different from the county total. Hence, each
building will be allocated a mix of fossil fuel consumption
identical to the county total.

Spatial distribution

The county-scale commercial, residential, and industrial
nonpoint FFCO2 emissions are allocated to each land par-
cel in proportion to the product of the NE-EUI and the total
floor area,

EC(b)f
s = NE_EUIf

sFA(b), (1)

where the energy consumed, EC, in each building, b, is the
product of the NE-EUI value, NE_EUI, and the floor area,
FA, for each fuel, f, and each building in sector, s. The total
energy consumed, TEC, within the county for a sector, s, is
the sum of all the EC values across the N buildings in the
sector,

TECf
s =

N∑
b=1

EC(b)f
s. (2)

To convert this to FFCO2 emissions, we first calculate the
fraction of the total energy consumption associated with each
building,

F (b)f
s =

EC(b)f
s

TECf
s
, (3)

where F is the fraction of TEC consumed in building, b,
of sector s. This is then used to distribute the county total
FFCO2 emissions as follows:

E(b)f
s = E

f
sF (b)f

s, (4)

where E is the FFCO2 emissions either for the county or
for building, b, and fuel. In allocating emissions from coal
consumptions, however, NE-EUI takes the value of “1” for
all building types so that the allocated emission in a building
is directly proportional to the floor area.

Temporal distribution

The hourly time structure for buildings in the residential and
commercial sectors are created via the use of eQUEST, a
building energy simulation tool run for each of the building
classes listed in Tables 2 and 3 and using only the temporal
structure of the energy consumption output (Hirsch and As-
sociates, 2004). The model domain is specified as the city of
Los Angeles for the year 2011 with Typical Meteorological
Year (TMY) weather data from the DOE (Marion and Urban,
1995). The mean building area is provided by the parcel data
as described previously.

For the industrial buildings, a temporal profile represent-
ing the mean of industrial point source temporal surrogates
provided by EPA, are used (USEPA, 2015a). Figure 3 shows
the hourly time profile during a 1-week period in April for a
selected building in the residential and commercial sector.

2.3.2 Industrial and commercial point sources

Little space and time processing is required for industrial and
commercial point source emissions since they are geocoded
to specific facilities and emitting stacks or similar identifi-
able emission points. However, visual inspection of the point
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Table 2. Residential NE-EUI survey values by building type from the Residential Energy Consumption Survey (RECS).

RECS building Pre-1980 Post-1979 Pre-1980 Post-1979
type NG NE-EUI NG NE-EUI fuel oil NE-EUI fuel oil NE-EUI

(kbtu ft−2) (GJ m−2) (kbtu ft−2) (GJ m−2) (kbtu ft−2) (GJ m−2) (kbtu ft−2) (GJ m−2)

Mobile home 52.56 (0.5969) 22.90 (0.2601) n/a (n/a) n/a (n/a)
Single-family detached house 24.53 (0.2786) 18.00 (0.2044) 18.87 (0.2143) 7.23 (0.0821)
Single-family attached house 42.56 (0.4833) 32.38 (0.3677) n/a (n/a) n/a (n/a)
Apartment building with 2–4 units 27.84 (0.3162) 42.27 (0.4800) n/a (n/a) n/a (n/a)
Apartment building with 5 or more units 17.21 (0.1954) 30.85 (0.3503) n/a (n/a) n/a (n/a)

“n/a” – not applicable. This indicates that there was no fuel consumption of this type evident from the survey data.

Table 3. Building type relationship and NE-EUI values for commercial buildings derived from the CBECS and CUES databases.

CBECS building CUES building NG NE-EUI Fuel oil NE-EUI
class class (kbtu ft−2) (GJ m−2) (kbtu ft−2) (GJ m−2)

Vacant Miscellaneous 9.3 (0.11) 2.5 (0.028)
Office All offices 17.9* (0.203) 1.67 (0.019)
Laboratory Miscellaneous 174.7 (1.984) 0.93 (0.011)
Non-refrigerated warehouse Unrefrigerated warehouse 3.1* (0.035) 1.03 (0.0117)
Food sales Food store 27.6* (0.313) 2.5 (0.028)
Public order and safety Miscellaneous 58.2 (0.661) 2.09 (0.0237)
Outpatient health care Health 29.1 (0.330) 3.05 (0.0346)
Refrigerated warehouse Refrigerated warehouse 5.6* (0.064) 2.5 (0.028)
Religious worship Miscellaneous 35.7 (0.405) 0 (0)
Public assembly Miscellaneous 26.5 (0.301) 0.23 (0.0026)
Education College, school 25.1* (0.285) 1.7 (0.019)
Food service Restaurant 210* (2.38) 100.5 (1.141)
Inpatient health care Health 113.9 (1.294) 2.6 (0.030)
Nursing Health 67.4 (0.765) 1.2 (0.014)
Lodging Lodging 42.4* (0.482) 1.4 (0.016)
Strip shopping mall Retail 62.7 (0.712) 2.5 (0.028)
Enclosed mall Retail 4.8 (0.055) 0.02 (0.0002)
Retail other than mall Retail 13.6 (0.154) 16.7 (0.190)
Service Miscellaneous 34.2 (0.388) 0.45 (0.0051)
Other Miscellaneous 18.5 (0.210) 5.3 (0.060)

* NE-EUI uses the CUES NE-EUI value due to sampling limitations in the CBECS data.

source locations in Geographical Information System (GIS)
suggested potential geocoding errors. Point source locations
were reviewed by searching facility names to an online ad-
dress search or via the EPA’s Facility Registry Service (FRS),
which can link the facility in question to all the reporting
made to the federal government under other environmental
regulations (USEPA, 2013). This often returns a more ac-
curate physical location. The geolocations considered inac-
curate were manually corrected. Out of the total 192 facil-
ities with corrected locations, 13 were moved a distance of
between 924 and 1022 km, while the remaining 179 were
moved 0.5 km or less. The large magnitude location changes
were likely transcription errors when originally recording the
location coordinates.

A given commercial or industrial point source is typically
composed of multiple emission processes or units. For exam-

ple, in Los Angeles County, the 2011 NEI reports a total of
3409 emission records at 842 individual facilities. In some
cases, the multiple emitting points at a facility are not at ex-
actly the same geocoded point but may represent different
emitting points at a facility that occupies a large area of land.
Most often, however, all emitting points at a given facility are
geocoded to the same latitude and longitude.

The sub-annual temporal distribution for the commercial
and industrial point source emissions used temporal surro-
gate profiles provided by the EPA, linked according to the
SCC of the emission record (USEPA, 2015a).

2.3.3 Electricity production

As described in Sect. 2.2, three different data sources are
used to quantify the FFCO2 emissions in the Hestia-LA do-
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Table 4. Industrial NE-EUI survey values from the DOE EIA MECS database.

MECS Class NG NE-EUI Fuel oil NE-EUI
(kbtu ft−2) (GJ m−2) (kbtu ft−2) (GJ m−2)

Food 519.3 (5.897) 30.5 (0.346)
Beverage and tobacco products 162.4 (1.844) 8.5 (0.097)
Textile mills 144.9 (1.646) 9.3 (0.11)
Textile product mills 63.4 (0.720) 0 (0)
Apparel 35.1 (0.399) 0 (0)
Leather and associated products 66.7 (0.757) 0 (0)
Wood products 76.6 (0.870) 49.5 (0.562)
Paper 672.8 (7.641) 69.1 (0.785)
Printing and related support 96.6 (1.10) 0 (0)
Petroleum and coal products 9766.0 (110.9) 436.2 (4.954)
Chemicals 2126.3 (24.15) 17.9 (0.203)
Plastics and rubber products 124.7 (1.416) 2.4 (0.027)
Nonmetallic mineral products 556.0 (6.31) 48.9 (0.555)
Primary metals 895.0 (10.2) 16.7 (0.190)
Fabricated metal products 124.2 (1.410) 2.3 (0.026)
Machinery 78.6 (0.893) 3.3 (0.037)
Computer and electronic products 80.0 (0.91) 0 (0)
Electrical equip., appliances, and components 133.3 (1.514) 3.7 (0.042)
Transportation equipment 100.6 (1.142) 4.0 (0.05)
Furniture and related products 28.6 (0.325) 0 (0)
Miscellaneous 44.7 (0.508) 2.8 (0.032)

Figure 3. Energy consumption intensity (hourly fraction) from an
eQUEST simulation of the average week in 2011 for two types of
buildings: “single-family detached house” and “office”.

main: the Clean Air Markets Division (CAMD), the DOE-
EIA reporting, and 2011 NEI CO emissions data. In 2011
there were a total of 34 CAMD facilities, 228 EIA facili-
ties and 147 NEI facilities (reported through the NEI 2011
point source file set) in the Hestia-LA domain. Total electric-
ity production emissions in the domain were 6.21 MtC yr−1

exclusive of biogenic fuels and 6.68 MtC yr−1 with biogen-
ics included. The CAMD data are reported at an hourly res-
olution, while the DOE EIA data are reported at a monthly
resolution and the 2011 NEI data are reported at an annual

resolution only. Reduction of all data to an hourly time incre-
ment was achieved by maintaining constant emissions within
a month or year for the DOE EIA and 2011 NEI data, respec-
tively.

2.3.4 On-road emissions

A preliminary version of the Hestia-LA on-road emissions
estimates were presented by Rao et al. (2017). The version
presented here uses updated data and Hestia methodologies.

Temporal distribution

The Hestia-LA on-road FFCO2 emissions input are retrieved
from the Vulcan v3.0 output spatialized to specific road seg-
ments in the Hestia-LA domain and categorized by vehicle
class and fuel. Hence, no further spatialization was required.

Construction of the temporal distribution in the Hestia sys-
tem relies upon the California Department of Transporta-
tion (CalTrans) Performance Measurement System (PeMS)
(PeMS, 2018). This dataset contains 2011 traffic count data
collected at 5 min intervals at measuring stations along free-
ways and principal arterials and along some minor arterials
and collectors (major and minor). Aggregation of the 5 min
counts to hourly values are used to construct hourly fractions
for each measurement station.

To apply a time distribution for the FFCO2 on-road emis-
sions on each road segment, an inverse distance weight-
ing (IDW) spatial interpolation method was used. A search
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within a neighborhood of a 10 km radius was performed from
the midpoint of each road segment to locate PeMS sites us-
ing a nearest neighbor searching library (Mount and Arya,
2010). In cases where more than one station was available,
the IDW interpolation was applied; in cases where only one
station was available, the time structure of this station was
directly assigned to the road segment in question. In cases
where no station was available within the 10 km neighbor-
hood, an average temporal distribution was assigned (an av-
erage of all station values in a county at that hour for that road
type). This last case occurred mostly in the rural portions of
predominantly rural counties.

For local roads, PeMS data were not available in any
of the counties within the Hestia-LA domain. Instead, the
weekday hourly time fractions were generated from Annual
Average Weekday Traffic (AAWT) data supplied by SCAG
(Mike Ainsworth and Cheryl Leising, Transportation Plan-
ning Department, SCAG Riverside Office, personal commu-
nication, 2014). The data contained five distinct time periods
within a single 24 h cycle: 06:00–09:00, 09:00–15:00, 15:00–
19:00, 19:00–21:00, 21:00–06:00. Hourly time fractions for
weekends were derived from the county average of weekend
hourly time fractions. The weekday and weekend hourly time
fractions were combined to form a complete week, and then
replicated for all 52 weeks in the entire year. This was done
because there was no significant seasonality in weekday and
weekend traffic across the year as observed from PeMS data.

2.3.5 Non-road

The non-road Hestia-LA FFCO2 emissions are completely
determined in the Vulcan system, and hence passed to the
Hestia-LA domain without further processing (see Gurney et
al., 2018 for details). To summarize the Vulcan process, Cal-
ifornia did not report FFCO2 non-road emissions to the NEI
2011 but did report non-road CO emissions. The CO emis-
sions were converted to FFCO2 using the SCC-specific ratios
of CO2/CO derived from all other states that reported both
species (a mean value). The spatial distribution of the non-
road FFCO2 emissions followed two approaches. Non-road
FFCO2 emissions reported through the 2011 NEI point data
source (five locations, 12 % of non-road FFCO2 in the LA
megacity) are located in space according to the provided lat-
itude and longitude. Emissions reported through the county-
scale non-road data source utilize multiple spatial surrogates
provided by the EPA, reflecting a series of spatial entities
such as the mines, golf courses, and agricultural lands. There
were instances in which non-road FFCO2 emissions could
not be associated with a spatial entity due to missing data.
These emissions are spatialized by first aggregating all the
offending sub-county emission elements within a county for
a given surrogate shape type (e.g., golf courses, mines) and
then distributing these emissions evenly across the county.

To distribute the non-road FFCO2 emissions from the an-
nual to hourly timescale, a series of surrogate time pro-

files provided by the EPA are used. These temporal surro-
gates are comprised of three cyclic time profiles (diurnal,
weekly, monthly) specific to SCC that are combined to gener-
ate hourly SCC-specific time fractions for an entire calendar
year.

2.3.6 Airport

Emissions of FFCO2 from airports retrieved from the Vulcan
system for the Hestia-LA domain are specific to geocoded
airport locations. Hence, the Hestia-LA system performs
the temporal distribution only. There are 374 commer-
cial airports and helipads in the Hestia-LA domain to-
taling 0.77 MtC yr−1, dominated by Los Angeles County
(0.39 MtC yr−1), and LAX in particular.

The annual airport FFCO2 emissions are distributed in
time utilizing airport-specific flight volume data from four
datasets:

1. the Operations Network (OPSNET) data from the Fed-
eral Aviation Administration (FAA), which reports total
date-specific daily flight volume (365 values) at specific
airports for specific aircraft classes (FAA, 2018a);

2. “AIRNAV” data that reports average daily percentage
flight volume for aircraft class at US airports and facil-
ities (AirNav, http://www.airnav.com/airports/, last ac-
cess: 1 August 2018);

3. the Enhanced Traffic Management System Count
(ETMSC) daily flight volume data from the FAA for
two airports’ in the Hestia-LA domain (NTD and RIV)
with mostly military operations (FAA, 2018b);

4. the Los Angeles World Airport (LAWA) data, which re-
ports hourly flight volume for Los Angeles International
Airport (LAX), Ontario Airport (ONT), and Van Nuys
Airport (VNY) (Norene Hastings, Environmental Su-
pervisor, Environmental Services division, Los Angeles
World Airports, personal communication, 2014).

For three large airports (LAX, ONT, VNY), the daily aircraft
class-specific flight volume (from OPSNET) and the hourly
data of flight volume (from LAWA) were combined to create
hourly aircraft class-specific time profiles (Figs. 4–6). All of
the flight volume data are specific to four aircraft classes:
Military (MIL), Air Carrier (AC), General Aviation (GA),
and Air Taxi (AT).

To generate hourly time profiles for all other airports in
the Hestia-LA domain for which this type of detailed hourly
data were not available, airports first were categorized based
on average daily flight volumes and average aircraft class
proportions from the OPSNET, AIRNAV and ETMSC data.
Each airport was categorically matched to one of the two
non-international airports with hourly data (ONT, VNY) and
the hourly time fractions adopted. LAX was unique in terms
of its volume and aircraft class proportions and hence was
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Figure 4. Average hourly flight volume at LAX for (a) total, (b) AC, (c) AT, (d) GA, and (e) MIL aircraft classes for each day of the week.
The plots represent the mean diurnal cycle for all Mondays, Tuesday, Wednesdays, and so on, given a full year of data.

Figure 5. Same as Fig. 4 but for the Ontario (ONT) airport.

not used for any other airports. For helipads and very small
airports, a flat time structure was used.

2.3.7 Railroad

Railroad FFCO2 emissions are similarly distributed in space
within the Vulcan system and passed through to the Hestia-
LA landscape without alteration (see Gurney et al., 2018
for additional details). The Vulcan process treats railroad
point records somewhat differently from the railroad non-
point records. The point source railroad emissions are asso-
ciated with rail yards and related geo-specific locales and are
placed in space according to the provided latitude and longi-
tude. The railroad FFCO2 emissions associated with the non-
point 2011 NEI reporting contain an ID variable that links to

a spatial feature (rail line segment) in the EPA railroad GIS
shapefile. Nearly two-thirds of the railroad emitting segments
have no segment link. The sum of these “unlinked” railroad
FFCO2 emissions are distributed to rail line within the given
county according to freight statistics. The annual railroad
FFCO2 emissions are distributed to the hourly timescale with
no additional temporal structure (a “flat” time distribution).

2.3.8 Commercial marine vessels

The commercial marine vessel (CMV) FFCO2 emissions re-
trieved from the Vulcan system are specific to county and
SCCs, which are subsequently aggregated by the Hestia-
LA system into emissions associated with two activity cate-
gories: “port” emissions and “underway” emissions. For the
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Figure 6. Same as Fig. 4 but for the Van Nuys (VNY) airport.

port CMV emissions (Fig. 7), a port shapefile from the EPA
was used as a reference along with a visual inspection of the
coastline (USEPA, 2015a).

Allocation of the FFCO2 emissions designated as “un-
derway” used a polyline shapefile (Fig. 8) of commer-
cial shipping lanes in California provided by CARB (Andy
Alexis, California Air Resources Board, personal communi-
cation, 2011, https://www.arb.ca.gov/ports/marinevess/ogv/
ogv1085.htm, last access: 6 July 2011). The shipping lanes
for each county were bounded so that only lanes between the
exterior of ports and a distance of 38.6 km from the port exte-
rior were included. County total FFCO2 emissions were then
distributed evenly to these shipping lanes on a per unit length
basis individually for each of the three counties. Each ship-
ping lane segment receives its length fraction of the annual
total of underway emissions.

The time profile was based on the Marine Emissions
Model (MEM) developed by CARB. MEM had marine ves-
sel activity data, which includes the arrival time of ocean-
going vessels for all ports in California spanning the 2004
to 2006 time period (Andy Alexis, California Air Resources
Board, personal communication, 2011). This hourly dataset
was analyzed using a Fourier time series, which allowed for
an isolation of the dominant cycles of ship traffic in the data.
Results from the Fourier fit were then used to fill in the miss-
ing hours. Weekday hours were examined separately from
weekend hours to isolate potential differences in traffic vol-
ume. Three cycles resulted: a 24 h diurnal cycle, a weekly
cycle, and a monthly cycle. These were applied to all years
of the annual FFCO2 emissions to create an hourly distribu-
tion at each of the CMV ports within the domain.

2.3.9 Cement

Emissions of FFCO2 from cement production facilities re-
trieved from the Vulcan system for the Hestia-LA domain are
specific to geocoded facility locations. CO2 is emitted from
cement manufacturing as a result of fuel combustion and as
process-derived emissions (Andrew, 2018). The emissions
from fuel combustion are captured in the industrial sector.
The process-derived CO2 emissions result from the chemical
process that converts limestone to calcium oxide and CO2
during “clinker” production (clinker is the raw material for
cement, which is produced by grinding the clinker material).
These emissions are reported as cement sector emissions.

These emissions are fully calculated, spatialized and tem-
poralized in the Vulcan v3.0 system and passed directly to
the Hestia-LA landscape. The cement facilities are geocoded
with some corrections to provide more accurate placement of
the emission stacks.

2.4 Gridding

The county-level FFCO2 emissions inventory, which has
been distributed into the point, line, and polygon features by
sector, is rasterized into a sector-specific and time-resolved
into gridded form under a common grid reference. This grid
reference divides the entire Hestia-LA domain into 509 by
342 1 km× 1 km grid cells on the California State Plane Co-
ordinate System. The grid reference is made into “fishnet” in
the shapefile format with 509× 342 grid cells.

The first step of the gridding procedure is to perform a
spatial intersection operation between the fishnet and each of
the sectoral emissions layers in ArcGIS. The output of an in-
tersection operation is a new set of features common to both
input layers. The emissions value of each feature in the inter-
section output was scaled by the ratio of the spatial footprint
of the feature to that of the original feature in the sectoral
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Figure 7. The six ports in the Hestia-LA domain to which Vulcan FFCO2 port emissions are allocated. © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.

Figure 8. Commercial Marine Vessel (CMV) shipping lanes in Hestia-LA to which Vulcan FFCO2 underway emissions are allocated
(24 miles = 38.6 km). © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

emissions layer. For line-sourced and polygon-sourced emis-
sions layers, the spatial footprint represents the line length
and polygon area, respectively. For point-sourced layers, the
footprint is equal to 1.

2.5 Uncertainty

Uncertainty estimation for Hestia results is challenging ow-
ing to the fact that many of the datasets used to construct
the flux results are not accompanied by uncertainty or trace-
able to transparent sources or methods. The approach taken

for the Hestia-LA v2.5 results was to conservatively estimate
the uncertainty based on available comparisons to Hestia re-
sults and exploration of the dominant components of the Hes-
tia output. The first of these is a comparison of the Hestia-
Indianapolis (Hestia-Indy) results to an inverse estimation of
fluxes in the INFLUX project (Gurney et al., 2017). In that
study, it was shown that the Hestia-Indy whole-city FFCO2
emissions result agreed with an inverse estimate (Lauvaux
et al., 2016) within 3.3 % (CI: −4.6 % to +10.7 %). This
suggests both potential bias (3.3 %) and an estimation uncer-
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tainty (∼ 7.5 %). This comparison was accomplished by esti-
mating portions of the carbon budget, included in the inverse
estimate but not explicitly included in the Hestia-Indy re-
sult. Most importantly, biosphere respiration estimated from
chamber studies at commensurate urban latitudes was com-
bined with a remote-sensing based approach to quantifying
the available vegetated landscape. This comparison, it should
be noted, is for a single city (Indianapolis) for a single time
period. We directly sum the random and systematic error
and use this in the current study to represent the Hestia-LA
whole-city uncertainty (a 95 % CI), rounded up to 11 %.

The next element for consideration with a conservative un-
certainty estimate is the work done to compare two differ-
ent electricity production FFCO2 estimates in the US. This
work (Gurney et al., 2016) found that one-fifth of the fa-
cilities had monthly FFCO2 emission differences exceed-
ing −6.4%−−+6.8% for the year 2009 (the closest ana-
lyzed year to the 2011 analysis examined here). The distri-
butions of emissions of the two datasets were not normally
distributed and neither were the differences. Hence, a typical
Gaussian uncertainty estimate cannot be made – rather, the
difference distribution was represented by quintiles of per-
centage difference. Hence, these values cannot be cast within
the context of other normally distributed errors. However, we
conservatively consider the quintile value (the positive and
negative tails) as a 1σ value and 13 % as a 2σ value. The
contribution of electricity production is important to urban
FFCO2 emissions uncertainty given how large power pro-
duction can be within the total urban FFCO2 context. For
example, in the Los Angeles megacity, electricity produc-
tion accounts for 19 % of the total FFCO2 emissions. The
percentage differences can act as a form of uncertainty at
the point-wise or (conservatively) the grid-cell scale, though
only representative of the type of uncertainties represented
by electricity production point sources.

Finally, an initial assessment of the range of two criti-
cal parameters in the Vulcan–Hestia estimation is included
as part of the conservative uncertainty estimation. The two
critical parameters are the CO emissions factor and the CO2
emissions factor. Primarily for the CO EF, there is a range
of potential values for each application (combination of fuel
category and combustion technology) though that range is
not represented by a well-populated distribution of values
but rather a discrete set of values within the data sources de-
scribed in Gurney et al. (2009). Furthermore, the expectation
is that the CO EFs would not be normally distributed even if
there were to be a well-populated distribution of values (i.e.,
many literature estimates of the same fuel and combustion
technology) owing to the nature of CO emissions from fuel
combustion. This is driven by both the variation in combus-
tion conditions for a given fuel–technology combination and
the variation is CO EF values across combustion technology.
The distribution would likely be a positively skewed “heavy-
tailed” or “long-tailed” distribution. For the current study, a
range of the CO and CO2 EF values culled from the litera-

ture are conservatively assigned a 1σ uncertainty of 10 % or
a 2σ value of 20 %. Like the electricity production analysis
in the previous paragraph, the uncertainty associated with the
CO and CO2 emission factors is a grid-cell-scale uncertainty
(as opposed to whole city where error cancelation occurs)
and is independent of the electricity production uncertainty
estimate (the CO and CO2 EF values are not used in the elec-
tricity production sector but in the other point sources and
nonpoint sources).

These latter two uncertainties are more representative of
grid-cell-scale uncertainties and sum them in quadrature to
arrive at a grid-cell-scale uncertainty (95 % CI) of 23.4 % or
conservatively rounded to 25 %. Work is underway that in-
cludes a complete input parameter range for the Hestia emis-
sions data results to more formally assign uncertainty at mul-
tiple scales.

3 Results

The total 2011 emissions for the Hestia-LA domain are
48.06± 5.3 MtC yr−1 (Fig. 9, Table 5). Transportation ac-
counts for the largest share (24.27±2.7 MtC yr−1) of the to-
tal, and within the transportation sector, on-road emissions
account for the largest portion (20.81± 2.3 MtC yr−1). The
next largest sectors are the industrial (11.65 MtC yr−1

± 1.3)
and electricity production (5.88± 0.76 MtC yr−1) sectors.
On-road, electricity production, residential, and industrial
FFCO2 emissions make up 86 % of the total. Petroleum ac-
counts for almost 75 % of the total LA megacity fuel con-
sumption for direct FFCO2 emissions, consistent with the
dominance of the transportation and industrial sectors, which
are mostly reliant on petroleum fuels. Los Angeles County
dominates emissions in the five counties of the Hestia-LA
domain, accounting for 55 % of the total FFCO2 emissions.
This is followed by San Bernardino, Orange, Riverside,
and Ventura counties, respectively. Los Angeles and San
Bernardino counties are dominated by on-road and industrial
FFCO2 emissions, while on-road emissions account for the
largest share in the remaining three counties by far. Not sur-
prisingly, Los Angeles county has the largest CMV FFCO2
emissions among the five counties, owing to the port of Los
Angeles, which hosts a large amount of international com-
mercial shipping. At 0.61±0.067 MtC yr−1, it rivals in emis-
sion magnitude the combination of residential and commer-
cial building emissions in each of the other four counties.

Total emissions in the LA megacity show a small
downward trend over the 2010–2015 time period of
0.44 % yr−1, which is a statistically significant trend (slope:
−0.21 MtC yr−1; CI: −0.397, −0.023). Individual sectors
show greater variation and there are compensating temporal
changes among the individual sectors (Fig. 10). The residen-
tial sector showed a relatively large decline in 2014, though
due to its relatively small portion of total emissions, has lim-
ited impact on the total temporal variation from 2010–2015.
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Figure 9. Total FFCO2 emissions proportions for the Hestia-LA domain: (a) FFCO2 emission proportions by sector and (b) FFCO2 emission
proportions by fuel category.

Table 5. Sectoral FFCO2 emissions in the five Hestia-LA domain counties for the year 2011.

Sector Los Angeles Orange San Bernardino Riverside Ventura Total
(MtC yr−1) (MtC yr−1) (MtC yr−1) (MtC yr−1) (MtC yr−1) (MtC yr−1)

Residential 2.00 0.64 0.40 0.36 0.20 3.59
Commercial 1.47 0.12 0.21 0.24 0.071 2.12
Industrial 7.27 0.94 2.99 0.25 0.20 11.65
Electricity production 2.73 0.69 1.54 0.71 0.21 5.88
Transportation 12.95 3.83 3.58 2.88 1.02 24.27
On-road 11.03 3.46 2.98 2.51 0.82 20.81
Non-road 0.79 0.27 0.19 0.19 0.087 1.52
Airport 0.39 0.06 0.14 0.11 0.070 0.77
Railroad 0.13 0.028 0.27 0.072 0.010 0.51
CMV 0.61 0.012 0 0 0.037 0.66
Cement 0 0 0.55 0.0077 0 0.55
Total 26.42 6.22 9.28 4.45 1.70 48.06

Similarly, 2015 showed a large increase in commercial sec-
tor emissions, which also do not translate to large changes in
the total FFCO2 emissions time series. The relative tempo-
ral stability of the industrial and on-road FFCO2 emissions
sectors, combined with their large share of the total FFCO2
emissions, are reflected in the total emissions trend. When
categorized by fuel type, natural gas FFCO2 emissions ex-
hibited the greatest variation with a maxima in 2012 and to
a lesser extent 2013, driven primarily by consumption in the
electricity production sector.

Spatial distribution of the Hestia-LA FFCO2 emissions
demonstrates the importance of the populated areas and road-
intensive portions of the domain in the overall emissions
(Fig. 11). The constant emissions that appear over large ar-
eas, particularly in San Bernardino and Riverside counties,
are due to the non-road FFCO2 emissions, which have rel-
atively simple spatial distribution proxies with considerable
areal extent.

Figure 12 shows the cumulative FFCO2 emissions across
four of the sectors for which the 1 km2 grid-cell accumula-
tion is most appropriate: the commercial, industrial, on-road,
and residential sectors. The other FFCO2 emission sectors
(airport, electricity production, cement) are not included in
Fig. 12 because they are dominated by a few points, have
limited spatial distribution (railroad), or no spatial variance
(non-road). The accumulation of FFCO2 emissions at the
threshold by which 10 % of the grid cells are accumulated
is noted in the figure. For the industrial sector, 10 % of the
largest-emitting grid cells account for 93.6 % of the total in-
dustrial sector emissions. For the commercial sector, this oc-
curs at 73.4 % of the accumulated grid cells. For the on-road
and residential sectors this occurs at 66.2 % and 45.3 %, re-
spectively. This demonstrates two important points about the
FFCO2 emissions in the Los Angeles megacity (and most
cities). First, the emissions have very high spatial variance
with few grid cells accounting for a large portion of the to-
tal FFCO2 emissions. Second, this is particularly true for the
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Figure 10. Fractional changes over the 2010 to 2015 timeframe in LA Basin FFCO2 emissions: (a) by fuel category and (b) by sector.
Whole-city error is provided for the total FFCO2 emissions only.

Figure 11. Hestia-LA v2.5 FFCO2 emissions for the year 2011 represented on a 1 km× 1 km grid: (a) total FFCO2 emissions, (b) on-road
FFCO2 emissions, (c) residential FFCO2 emissions, and (d) commercial FFCO2 emissions. Units: natural logarithm of kgC yr−1.
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Figure 12. Cumulative FFCO2 emissions according to key sectors
in the Hestia-LA FFCO2 emissions data product. The dashed line
at 10 % cumulative grid cells is given for reference. See text for
details.

industrial sector, driven by the fact that it is comprised of
a large proportion of point emitters. This is somewhat true
of the commercial sector, which does have some point-wise
data within the original NEI reporting. Of the remaining two
sectors, which contain no point-wise spatial emitters, the ma-
jority (66.2 %) of the on-road emissions are captured in the
largest 10 %, while the residential sector, being less concen-
trated, shows an accumulation just short of the 50 % thresh-
old at a 10 % grid-cell accumulation threshold.

An important attribute of estimating urban emissions at
fine spatial scales and timescales is the resulting clustering
in space (and time) of the emissions and the varying patterns
of the clustering across the emitting sectors. Figure 13 pro-
vides an analysis of spatial clustering using the Getis–Ord Gi
statistic, which provides a score that measures statistically
significant departures from random local clustering (Getis
and Ord, 1992). The three sectors included in this analysis are
the residential, commercial, and on-road sectors. The on-road
sector shows a more widely dispersed clustering pattern with
local “hotspots” generated by high traffic flow points and
traffic congestion, primarily on the interstate network, coinci-
dent with a greater density of commercial and residential ac-
tivity. The residential sector exhibits less extensive emissions
compared to the on-road FFCO2 emissions clustering but
with larger individual hotspot areas. Particularly large clus-
tering occurs from the coast centered on Santa Monica and
Marina del Rey and extending east and north through West
Hollywood on to Pasadena and Alhambra. Other hotspots oc-
cur in the Manhattan Beach to Redondo Beach corridor, the
Burbank and Glendale area, and the coastal portion of Or-
ange county (e.g., Huntington Beach, Newport Beach). The
commercial sector shows a similar overall extensivity to the

residential sector but with less extensive individual hotspots
associated with commercial building clusters.

There are very few estimates that can serve as an assess-
ment of the accuracy of the Hestia FFCO2 emissions, as few
inventory efforts have been accomplished at the sub-state
spatial scale in the United States. However, the Southern Cal-
ifornia Association of Governments (SCAG) has completed a
regional greenhouse gas emissions inventory for a base year
period of 1990–2009 with projections out to the year 2035
(Kimberly S. Clark and Christine Fernandez, Southern Cal-
ifornia Association of personal communication, 2012). The
SCAG inventory reflects two components that make a com-
parison to the Hestia-LA FFCO2 emissions data product im-
perfect. First, the domain considered in the SCAG inventory
includes Imperial county, a county not included in the Hestia-
LA domain. However, Imperial county is estimated to be less
than a few percent of the SCAG domain total. For example,
Imperial county on-road VMT is 1.9 % of the SCAG do-
main total. The Imperial county retail sales of electricity is
1.1 % of the SCAG domain total. The other distinction is that
the SCAG inventory reports total GHGs, inclusive of both
methane (CH4) and nitrous oxide (N2O). However, in the
sectors and activities used for comparing the SCAG inven-
tory to the Hestia-LA FFCO2 emissions data product, both
CH4 and N2O are negligibly small. Hence, small differences
(< 5 %) could be due to these categorical discrepancies. We
use only the reported Scope 1 emissions which were based on
the approach adopted by CARB based on guidelines from the
Intergovernmental Panel on Climate Change (CARB, 2010).

Figure 14 shows a 2010 comparison between the two esti-
mates using the comparable sector divisions. The Hestia-LA
FFCO2 emissions estimate is 10.7 % larger than the SCAG
estimate, 95 % of the difference (4.46 MtC yr−1) owing to the
larger industrial and electricity production FFCO2 emissions
in the Hestia estimate. We have included the non-road sector
in the on-road category as the SCAG inventory did not ex-
plicitly include a non-road sector. SCAG documentation sug-
gests that the non-road sector is included in the forecasts for
the residential, commercial, and industrial sectors (Kimberly
S. Clark and Christine Fernandez, Southern California As-
sociation of Governments, personal communication, 2012,
Parcel Data GIS shapefiles p. C-10), but further details on
the base year estimates could not be found and no mention
is made in the report where these sectors are described. If
the Hestia non-road estimate (1.56 MtC yr−1) was not allo-
cated to the on-road sector but distributed to the residential,
commercial, and industrial sectors it would exacerbate the
difference in the on-road, commercial, and industrial sectors.

The California Energy Commission archives energy con-
sumption data for both natural gas and electricity (http://
ecdms.energy.ca.gov/, last acces: 12 August 2019). The data
are archived as specific to the residential sector and the non-
residential sector. Because of ambiguities regarding the non-
residential sector definition, we compare the reported values
by county for the residential only (Table 6). Good agreement
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Figure 13. The Getis–Ord Gi z score for Hestia-LA FFCO2 emissions across three sectors: (a) commercial, (b) on-road, and (c) residential.

Figure 14. Comparison of sector-specific FFCO2 emissions for
the year 2010 between the Hestia-LA and SCAG estimates. Units:
MtC yr−1.

for natural gas FFCO2 emissions is achieved for the Los An-
geles megacity as a whole (< 1 %) with some variation at the
scale of the individual counties. Agreement with the CEC es-
timate is better than that found for the comparison with the
SCAG inventory (Hestia being 3.1 % lower than the SCAG
residential NG FFCO2 estimate).

Average hourly variations in FFCO2 emissions are sensi-
tive to both the sector and spatial location. Figure 15 presents
annual mean diurnal patterns specified by county and sector
(the railroad or cement sectors were constructed with no di-
urnal cycle and hence are not shown). As noted previously,
Los Angeles county shows the greatest emissions overall,
particularly for the commercial marine vessel sector where
the port of Los Angeles dominates. The commercial, resi-
dential, on-road, and CMV sectors exhibit two maxima, one
in the morning (∼ 05:00–10:00 local time) and another in the
afternoon–evening. In the commercial sector, this afternoon–
evening maximum occurs later in this time period centered
on 21:00 local time, coinciding with retail closing schedules.
The maximum CMV emissions are shifted by roughly 2 h
earlier in the day for both the morning and afternoon–evening
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Table 6. Residential natural gas FFCO2 emissions in the five
Hestia-LA domain counties for the year 2011 compared to estimates
from the California Energy Commission (CEC). Units: MtC yr−1.

County Hestia CEC Diff (%)

Los Angeles 1.94 1.98 −2.0 %
Orange 0.63 0.59 5.7 %
San Bernardino 0.40 0.39 0.8 %
Riverside 0.35 0.39 −11.1 %
Ventura 0.19 0.18 6.5 %
LA megacity 3.51 3.54 −0.9 %

peaks. The afternoon–evening maximum for the on-road sec-
tor shows an afternoon–evening maximum that is of longer
duration than that in the morning, with emissions gradually
rising after the midpoint of the day, local time. In addition
to large daily variations, the on-road sector contains a sig-
nificant weekly temporal pattern with emissions largest on
Monday and smallest on Saturday (Fig. 16).

Diurnal patterns in on-road and airport FFCO2 emissions
have a single maximum at the middle of the day but broadly
extending across all daylight hours. In the case of the non-
road emissions, this is simply a reflection of the EPA tempo-
ral surrogate applied. In the case of the airport FFCO2 emis-
sions, the time structure reflects the reported air traffic vol-
ume at the major airports in the LA megacity. Finally, the
industrial and electricity production sectors maintain rela-
tively constant emissions across the entire 24 h. In the case of
the industrial sector, this reflects the integration of industry-
specific EPA temporal surrogates within a given county. For
the electricity production sector, the time structure is pri-
marily driven by the stack-monitored emissions and shows
slightly greater emissions in the evening hours compared to
all other hours.

The diurnal patterns are consistent across all five coun-
ties with the exception of the commercial sector where there
are small differences in the maximum point of the morning
emissions in San Bernardino and Ventura counties compared
to the other LA megacity counties.

4 Discussion

The first Hestia urban FFCO2 emissions data product was
produced for the Indianapolis domain (Gurney et al., 2012).
As an outcome of the Hestia effort, a large multifaceted ef-
fort, the Indianapolis Flux Experiment (INFLUX), emerged
(Whetstone, 2018; Davis et al., 2017). INFLUX aims to ad-
vance quantification and associated uncertainties of urban
CO2 and CH4 emissions by integrating a high-resolution
bottom-up emission data product, such as Hestia, with atmo-
spheric concentration measurements (Turnbull et al., 2015;
Miles et al., 2017; Richardson et al., 2017), flux measure-
ments (Cambaliza et al., 2014, 2015; Heimburger et al.,

2017), and atmospheric inverse modeling. In addition to its
use as a key constraint in the INFLUX atmospheric inverse
estimation (Lauvaux et al., 2016), Hestia has been informed
by atmospheric observations making it useable as a stand-
alone high-resolution flux estimate offering a detailed space-
time understanding of urban emissions. Begun in the late
2000s, INFLUX has explored many aspects of the individ-
ual elements of a scientifically driven urban flux assessment
(e.g., Wu et al., 2018), in addition to demonstrating potential
reconciliation between Hestia and the atmospheric measure-
ments (Gurney et al., 2017; Turnbull et al., 2015). Similar ef-
forts are ongoing in the Salt Lake City (Mitchell et al., 2018;
Lin et al., 2018) and Baltimore (Martin et al., 2018) domains
with a different arrangement of atmospheric monitoring and
modeling. As with INFLUX, a Hestia FFCO2 emissions data
product was produced in each domain (Patarasuk et al., 2016;
Gurney et al., 2018).

The Hestia Los Angeles megacity effort was developed
under the Megacities Carbon Project framework (https://
megacities.jpl.nasa.gov/portal/, last access: 12 August 2019).
It was designed to serve the Megacities Carbon Project in
a similar capacity to its role in INFLUX. The Hestia-LA
results are unique in that it is the first high-resolution spa-
tiotemporally explicit inventory of FFCO2 emissions cen-
tered over a megacity. Presented here at the 1 km2 spatial and
hourly temporal resolution, the emissions can be represented
at finer spatial scales down to the individual building, though
with higher uncertainty. While policy emphasis in California
thus far has been focused on CH4 emissions (Carranza et al.,
2018; Wong et al., 2016; Verhulst et al., 2017; Hopkins et al.,
2016), work is ongoing to use the extensive atmospheric CO2
observing capacity in the Los Angeles domain (e.g., Newman
et al., 2016; Wong et al., 2015; Wunch et al., 2009) within
an atmospheric CO2 inversion. This will offer an important
evaluation of the Hestia-LA emissions for which limited in-
dependent evaluation is currently available.

The potential of the Hestia-LA FFCO2 emissions to enable
or assist with policymaking in the city, county, or metropoli-
tan planning domain of the overall Southern California area
is considerable. The traditional urban inventory approach,
such as that accomplished by many cities as part of their cli-
mate action plans, are whole-city accounts, often specific to
sector, that follow one of a few inventory protocols. Given
the challenges of data acquisition and the idiosyncrasies of
protocol choice and needs, the traditional urban inventories
are difficult to compare across cities and hence aggregate re-
liably in a metropolitan domain such as the LA megacity.
Importantly, without explicit space and time emissions infor-
mation, they are difficult to calibrate with atmospheric mea-
surements and hence evaluate against this important scien-
tific constraint. The Hestia-LA FFCO2 emissions approach
attempts to overcome these limitations to traditional inven-
tory work. By quantifying emissions at the scale of individual
buildings and road segments, with process detail such as the
sector, fuel, and combustion technology, Hestia results can be
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Figure 15. Average daily FFCO2 emissions in the Hestia-LA v2.5 data product for five counties across eight sectors: (a) residential, (b) on-
road, (c) commercial, (d) airport, (e) commercial marine vessel, (f) electricity production, (g) industrial, and (h) non-road. Note the different
scale ranges on each plot. Units: kgC h−1.
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Figure 16. Average weekly on-road FFCO2 emissions from the
Hestia-LA v2.5 data product for five counties. Units: kgC d−1.

organized according to most of the protocols in use by cities.
This explicit space and time detail also allows for calibration
to atmospheric measurements, for which emission location
and time structure is essential.

The state of California continues to lead the nation in
climate policy with numerous legislative and executive or-
ders outlining both general reduction goals and specific
policy instruments. The California Global Warming So-
lutions Act (Assembly Bill 32) passed in 2006, speci-
fies a statewide reduction in greenhouse gas emissions to
1990 levels by the year 2020 (https://www.arb.ca.gov/cc/
ab32/ab32.htm, last access: 12 August 2019). Furthermore,
the bill requires reporting and verification of reductions
in order to demonstrate compliance. Executive order B-
30-15 and Senate Bill SB 32 have built on this with an
aim to reduce emissions 40 % below 1990 levels by 2030
and 80 % below 1990 levels by 2050, respectively (https://
www.ca.gov/archive/gov39/2015/04/29/news18938/, last ac-
cess: 12 August 2019; https://leginfo.legislature.ca.gov/
faces/billTextClient.xhtml?bill_id=201520160SB32, last ac-
cess: 12 August 2019). Ultimately, much of the specific ac-
tion needed to meet these goals will rest upon local govern-
ments and authorities. Given that 87 % of the state population
resides in urban areas and nearly half of state population re-
sides in the Los Angeles megacity, the cities and counties
that comprise the Los Angeles metropolitan area have a cen-
tral role to play in achieving the statewide climate change
policy goals. The city of Los Angeles, the largest individual
city in the metro region, has specified goals consistent with
the state commitments, expecting to reduce greenhouse gas
emissions to 35 % below 1990 levels by the year 2030 (https:
//coolcalifornia.arb.ca.gov/story/city-of-los-angeles, last ac-
cess: 12 August 2019). To meet these reduction goals, policy
actions will become increasingly difficult to achieve at no
or low cost and economic efficiency will become central to
making policy choices.

The most important attribute of the Hestia-LA approach,
therefore, is the potential it offers for targeting urban CO2
reduction policy more efficiently. As shown in Figs. 12 and
13, FFCO2 emissions are highly variable in space and typi-
cally cluster in concentrated areas. In choosing specific pol-
icy approaches and instruments, this offers Los Angeles pol-
icymakers the ability to target specific neighborhoods, road
segments, or commercial hubs, where policies will achieve
the greatest reduction for resources expended. This rests on
the argument that specificity leads to efficiency. As all cities,
including those in the Los Angeles megacity, move towards
those aspects of carbon emission reductions that are not part
of the “low-hanging fruit” policy instruments, competition
for limited resources and policy justification will increase.
Having information that targets the most efficient and effec-
tive emission reduction investments, established by indepen-
dent rigorous scientific information, will be at a premium.
For example, if a small proportion of the commercial sec-
tor buildings in the LA megacity account for a large propor-
tion of the FFCO2 emissions, knowing the location of these
buildings and targeting energy efficiency programs to those
buildings, may offer the most economically efficient route
to emissions reductions in the commercial sector. A similar
argument can be made in the on-road sector due to the clus-
tering of large on-road emitting grid cells and specific road-
class attributes (see Rao et al., 2017).

A number of caveats are worth mentioning in association
with the Hestia-LA v2.5 FFCO2 emissions results. With Vul-
can v3.0 as the starting point for the quantification in Hestia,
errors in Vulcan will be passed to Hestia, with a few excep-
tions. Of particular note are the industrial sector and, more
specifically, refining operations which have limited emis-
sions reporting. These remain difficult to quantify due to the
range of CO emission factors representing many of the com-
bustion processes undertaken at these large and complex fa-
cilities. The uncertainty estimation described remains limited
and there are additional sources of uncertainty that must be
quantified such as categorical errors (e.g., misspecification
of fuel category or road class), errors in spatial accuracy and
spatial error correlation. Quantifying these contributions to
the overall uncertainty presented here remain a task for fu-
ture work.

5 Data availability, policy, and future updates

The Hestia-LA v2.5 emissions data product can be down-
loaded from the data repository at the National Institute
of Standards and Technology (https://doi.org/10.18434/T4/
1502503, Gurney et al., 2019) and is distributed under Cre-
ative Commons Attribution 4.0 International (CC-BY 4.0,
https://creativecommons.org/licenses/by-nc-sa/4.0/, last ac-
cess: 12 August 2019). The Hestia-LA v2.5 FFCO2 emis-
sions data product is provided as annual and hourly (local
and UTC versions) 1 km× 1 km NetCDF file formats, one
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file for each of the 6 years (2010–2015). The hourly files
are approximately 2.9 GB each. The annual files are 0.34 GB
each.

Attempts will be made to update the Hestia-LA FFCO2
emissions on a roughly bi-annual basis, depending upon sup-
port, the availability of updates to the Vulcan FFCO2 emis-
sions data product, and updates to the additional data sources
described in this study.

6 Conclusions

The Hestia Project quantifies urban fossil fuel CO2 emissions
at high space- and time-resolution with application to both
scientific and policy arenas. We present here the Hestia-LA
version 2.5 FFCO2 emissions data product, which represents
hourly, 1 km2, sector-specific emissions for the five counties
of the Los Angeles metropolitan area for the 2010 to 2015
time period. The methodology relies on the results of the Vul-
can Project (version 3.0) further enhancing and distributing
emissions to the scale of individual buildings and road seg-
ments with local data sources acquired from local govern-
ment agencies. Each sector is quantified using data sources
and spatial and temporal distribution approaches distinct to
the sector characteristics. The results offer a detailed view
of FFCO2 emissions across the LA megacity and point to
the extreme spatial variance of emissions. For example, 10 %
of the 1 km2 emitting grid cells account for 93.6 %, 73.4 %,
66.2 %, and 45.3 % of the emissions in the industrial, on-
road, commercial, and residential sectors, respectively. We
find that the LA megacity emitted 48.06± 5.3 MtC yr−1 in
the year 2011, dominated by Los Angeles county (26.42±
2.9 MtC yr−1) and from a sector-specific viewpoint, domi-
nated by the on-road sector (20.81± 2.3 MtC yr−1). Hestia
FFCO2 emissions are 10.7 % larger than the inventory esti-
mate generated by the local metropolitan planning agency,
a difference that is driven by the industrial and electric-
ity production sectors. Good agreement is found (< 1 %)
when comparing residential natural gas FFCO2 emissions
to utility-based reporting at the county spatial scale. The
largest temporal variations are found in the diurnal cycle with
the residential, commercial, on-road, and commercial marine
vessel emissions showing two maxima, one in the morning
and a second in the afternoon–evening. Airport and non-road
emissions, by contrast show broad maxima across the day-
light hours. Finally, the industrial and electricity production
sectors show little diurnal variation across 24 h. The on-road
sector also exhibits variation in the weekly distribution of
emissions with maximum FFCO2 emissions on Monday and
minimum emissions on Saturday.

The Hestia-LA v2.5 FFCO2 emissions data product offers
the scientific and policymaking communities unprecedented
spatially and temporally resolved information on FFCO2
emission sources in the Los Angeles megacity. As part of the
Megacities Carbon Project, future work includes incorpora-

tion into atmospheric CO2 inversion research to further eval-
uate the Hestia-LA data product and improve estimation. Pol-
icymakers can use the Hestia-LA results to better understand
FFCO2 emissions at the human scale, offering the potential
for improved targeting of FFCO2 reduction policy instru-
ments. Finally, urban researchers can use Hestia-LA to ex-
plore a number of important urban science questions such as
how emissions intersect with other urban sociodemographic
variables such as income, education, housing size, or vehicle
ownership.

The Hestia-LA data product is publicly available and will
be updated with future years as data becomes available.
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